Get parameter estimates and model estimates
par_est.Rd
Get parameter estimates and model estimates
Arguments
- mod
Fitted model object from
run_mod
Examples
dat <- sim_slr(n_sim = 30)
mod <- run_mod(dat, model = "slr")
#> module glm loaded
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 60
#> Unobserved stochastic nodes: 33
#> Total graph size: 380
#>
#> Initializing model
#>
#> No convergence issues detected
par_est(mod)
#> $pred_summary
#> # A tibble: 50 × 4
#> x pred_y lwr_95 upr_95
#> <dbl> <dbl> <dbl> <dbl>
#> 1 0.136 0.195 0.0944 0.296
#> 2 0.174 0.233 0.137 0.331
#> 3 0.212 0.271 0.179 0.365
#> 4 0.250 0.308 0.218 0.400
#> 5 0.287 0.346 0.260 0.433
#> 6 0.325 0.384 0.303 0.467
#> 7 0.363 0.422 0.344 0.502
#> 8 0.401 0.459 0.385 0.539
#> 9 0.439 0.497 0.425 0.574
#> 10 0.477 0.535 0.467 0.608
#> # … with 40 more rows
#>
#> $par_summary
#> # A tibble: 2 × 16
#> variable mean median sd mad q5 q95 rhat ess_bulk ess_tail
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 alpha 0.0613 0.0601 0.0561 0.0548 -0.0311 0.153 0.999 948. 866.
#> 2 beta 0.996 0.995 0.0518 0.0505 0.912 1.09 1.00 901. 851.
#> # … with 6 more variables: par_mean <dbl>, par_median <dbl>, par_sd <dbl>,
#> # par_mad <dbl>, par_q5 <dbl>, par_q95 <dbl>
#>