Fit errors-in-variables models with JAGS
run_mod.Rd
Fit errors-in-variables models with JAGS
Usage
run_mod(
dat,
model = "slr",
EIV = TRUE,
BP_scale = FALSE,
n_cp = 1,
igp_smooth = 0.2,
iter = 5000,
burnin = 1000,
thin = 4,
scale_factor_x = 1,
scale_factor_y = 1
)
Arguments
- dat
Input data with columns x,x_err,y,y_err
- model
The model to run. Choose from slr, cp, gp, igp
- EIV
Use EIV framework. Defaults to TRUE
- BP_scale
Present the data as Before Present (BP). Defaults to FALSE.
- n_cp
Number of change points if model = "cp" is chosen. Can choose from 1,2,3,4.
- igp_smooth
Informs prior for the smoothness (correlation) parameter if model = "igp" is chosen. Choose a value between 0 and 1. Closer to 1 will increase smoothness.
- iter
MCMC iterations
- burnin
MCMC burnin
- thin
MCMC thinning
- scale_factor_x
value to divide the predictor (x) by to change the scale. 1 will result in no change. 1000 is recommended if x is years.
- scale_factor_y
value to divide the response (y) by to change the scale. 1 will result in no change.
Examples
dat <- sim_slr(n_sim = 30)
mod <- run_mod(dat, model = "slr")
#> Compiling model graph
#> Resolving undeclared variables
#> Allocating nodes
#> Graph information:
#> Observed stochastic nodes: 60
#> Unobserved stochastic nodes: 33
#> Total graph size: 380
#>
#> Initializing model
#>
#> No convergence issues detected