Simulate data with measurment error from a simple linear regression
sim_slr.Rd
Simulate data with measurment error from a simple linear regression
Usage
sim_slr(
n_sim = 50,
min_x = 0,
max_x = 2,
alpha = 0,
beta = 1,
sigma = 0.1,
x_err = 0.1,
y_err = 0.1
)
Arguments
- n_sim
Number of data points to simulate
- min_x
Minimum x value
- max_x
Maximum x value
- alpha
Regression intercept
- beta
Regression slope
- sigma
Nugget variation
- x_err
x measurement error
- y_err
y measurement error
Examples
sim_slr(n_sim = 50)
#> # A tibble: 50 × 6
#> x x_err y y_err true_y true_x
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.00801 0.1 0.122 0.1 0.0276 0.0276
#> 2 0.190 0.1 -0.0713 0.1 0.180 0.180
#> 3 1.89 0.1 1.95 0.1 1.99 1.99
#> 4 0.663 0.1 0.874 0.1 0.906 0.906
#> 5 1.15 0.1 0.938 0.1 1.04 1.04
#> 6 1.65 0.1 1.79 0.1 1.68 1.68
#> 7 0.866 0.1 0.823 0.1 0.856 0.856
#> 8 0.644 0.1 0.866 0.1 0.741 0.741
#> 9 1.71 0.1 1.75 0.1 1.83 1.83
#> 10 1.23 0.1 1.63 0.1 1.44 1.44
#> # … with 40 more rows