Simulate data with measurment error from a Gaussian process regression
sim_gp.Rd
Simulate data with measurment error from a Gaussian process regression
Usage
sim_gp(
n_sim = 50,
min_x = 0,
max_x = 2,
alpha = 0,
sigma_g = 2,
phi = 2,
sigma = 0.1,
x_err = 0.1,
y_err = 0.1
)
Arguments
- n_sim
number of data points to simulate
- min_x
Minimum x value
- max_x
Maximum x value
- alpha
regression intercept
- sigma_g
GP variance parameter
- phi
GP correlation parameter
- sigma
nugget variation
- x_err
x measurement error
- y_err
y measurement error
Examples
sim_gp(n_sim = 50)
#> Compiling rjags model...
#> Calling the simulation using the rjags method...
#> Note: the model did not require adaptation
#> Burning in the model for 4000 iterations...
#> Running the model for 1 iterations...
#> Simulation complete
#> Finished running the simulation
#> # A tibble: 50 × 6
#> x x_err y y_err true_y true_x
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.0492 0.1 -0.769 0.1 -0.750 0.0120
#> 2 0.0507 0.1 0.287 0.1 0.278 0.156
#> 3 0.212 0.1 0.319 0.1 0.289 0.158
#> 4 -0.0126 0.1 0.933 0.1 0.827 0.241
#> 5 0.487 0.1 1.25 0.1 1.23 0.341
#> 6 0.462 0.1 1.34 0.1 1.23 0.343
#> 7 0.402 0.1 1.22 0.1 1.27 0.415
#> 8 0.293 0.1 1.36 0.1 1.24 0.432
#> 9 0.312 0.1 1.21 0.1 0.976 0.509
#> 10 0.622 0.1 -0.0588 0.1 0.224 0.622
#> # … with 40 more rows